ECOTOXICOLOGY: ARTHROPODS
ARACHNIDS
Goßmann I., Süßmuth R., Scholz-Böttcher B. M. (2022): Plastic in the air?!-Spider webs as spatial and temporal mirror for microplastics including tire wear particles in urban air. Science of The Total Environment 832: 155008.
FULL TEXT
Abstract
Studies concerning quantities of microplastics (MP) including tire wear particles (TWP) contamination in air samples are scarce. Spider webs have been suggested as a cheap and easily accessible biomonitor particularly for inorganic contaminates. Here, we emphasize the potential of spider webs to gain insights in the spatial and temporal trends of MP in urban air. The samples, collected in a mid-sized German city, were processed with Fentons reagent and measured using pyrolysis-gas chromatography–mass spectrometry for specific, polymer related indicator compounds. All samples contained TWP and other MP. The latter are detected and quantified as pyrolysis products of a polymer backbone. The results were expressed as clusters (prefix “C”). Determined polymer contaminations ranged from 11.4 μg/mg to 108 μg/mg spider web sample. The dominant polymer was C-PET (Ø 36.0% of total MP) derived most likely from textile fibers. Additionally, there was evidence for traffic-related contaminations. In particular car tire tread (Ø 40.8% of total MP) and ⁎C-PVC (Ø 12.0% of total MP) were found, with the latter presumably originating from paint used for road markings. Truck tire tread, C-PE, C-PP, C-PS, C-PMMA, and C-PC were also frequently found, but in much lower abundance (Ø <6.4% of total MP). Differences in contamination levels could be plausibly related to the sampling locations.
CRUSTACEANS
da Silva L. F., Nobre C. R., Moreno B. B., Pereira C. D. S., de Souza Abessa D. M., Choueri R. B., Gusso-Choueri P. K., Cesar A. (2022): Non-destructive biomarkers can reveal effects of the association of microplastics and pharmaceuticals or personal care products. Marine Pollution Bulletin 177: 113469.
FULL TEXT
Abstract
Methods to assess the effects of contaminants on marine organisms typically involve euthanasia to obtain samples, but less invasive techniques may be more appropriate for working with threatened species. In this study, were assessed the biological responses of crabs exposed to microplastics and contaminants of emerging concern. Biochemical and cellular effects (lipid peroxidation, DNA damage, cholinesterase activity, and lysosomal membrane stability) in hemolymph were analyzed in a kinetic study, at 3 and 7 days, in U. cordatus exposed to microplastics spiked with Triclosan (TCS) or 17α-Ethynylestradiol (EE2). The results showed that the contaminants were produced toxic effects in the crabs exposed either to the microplastics alone (oxidative stress, genotoxicity, and neurotoxicity), or to microplastics with TCS or EE2 adsorbed (neurotoxic and cytotoxic). The present study showed the responsiveness of non-lethal analyses to understanding the biological effects of combined exposure to microplastics and chemical pollution.